Lesson 14. Improving Search: Convexity and Optimality

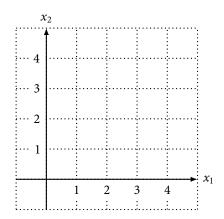
1 Overview

- 1: Find an initial feasible solution \mathbf{x}^0
- 2: Set k = 0
- 3: **while** \mathbf{x}^k is not locally optimal **do**
- 4: Determine a new feasible solution \mathbf{x}^{k+1} that improves the objective value at \mathbf{x}^k
- 5: Set k = k + 1
- 6: end while
- Step 3 Improving search converges to local optimal solutions, which aren't necessarily globally optimal
- Wishful thinking: when are all local optimal solutions are in fact globally optimal?

2 Convex sets

Example 1. Let $\mathbf{x} = (1,1)$ and $\mathbf{y} = (4,3)$. Compute and plot $\lambda \mathbf{x} + (1-\lambda)\mathbf{y}$ for $\lambda \in \{0,1/3,2/3,1\}$.

λ	$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$
0	
1/3	
2/3	
1	



• Given two solutions **x** and **y**, the **line segment** joining them is

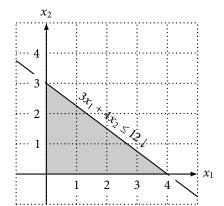
$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$$
 for $\lambda \in [0, 1]$

- A feasible region S is **convex** if for all $\mathbf{x}, \mathbf{y} \in S$, then $\lambda \mathbf{x} + (1 \lambda)\mathbf{y} \in S$ for all $\lambda \in [0, 1]$
 - A feasible region is convex if for any two solutions in the region, <u>all solutions on the line segment joining</u> these solutions are also in the region
- Graphically: convex vs. nonconvex

Example 2. Show that the feasible region of the LP below is convex.

minimize
$$3x_1 + x_2$$

subject to $3x_1 + 4x_2 \le 12$ (1)
 $x_1 \ge 0$ (2)
 $x_2 \ge 0$ (3)



Proof.

- Let $\mathbf{x} = (x_1, x_2)$ and $\mathbf{y} = (y_1, y_2)$ be arbitrary points in the feasible region
- In other words, **x** and **y** satisfy (1), (2), (3)
- We need to show $\lambda \mathbf{x} + (1 \lambda)\mathbf{y}$ also satisfies (1), (2), (3) for any $\lambda \in [0, 1]$
- Note that

$$\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} =$$

• One constraint at a time: does $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ satisfy (1)?

$$3(\lambda x_1 + (1-\lambda)y_1) + 4(\lambda x_2 + (1-\lambda)y_2) = \lambda(3x_1 + 4x_2) + (1-\lambda)(3y_1 + 4y_2)$$

$$\leq 12\lambda + 12(1 - \lambda)$$
$$= 12$$

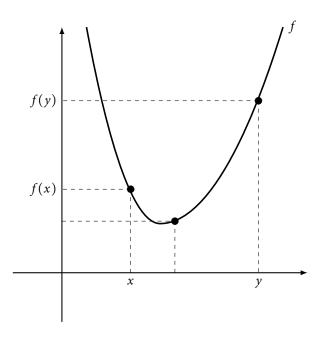
- We can show $\lambda x + (1 \lambda)y$ also satisfies (2) and (3) in a similar fashion
- In general, the feasible region of an LP is convex

3 Convex functions

• Given a convex feasible region *S*, a function $f(\mathbf{x})$ is **convex** if for all solutions $\mathbf{x}, \mathbf{y} \in S$ and for all $\lambda \in [0,1]$

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

• Graphically:



Example 3. Show that the objective function of the LP in Example 2 is convex.

Proof.

- Let $f(\mathbf{x}) = 3x_1 + x_2$
- For any \mathbf{x} and \mathbf{y} , we have:

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) = 3(\lambda x_1 + (1 - \lambda)y_1) + (\lambda x_2 + (1 - \lambda)y_2)$$

= $\lambda(3x_1 + x_2) + (1 - \lambda)(3y_1 + y_2)$

$$= \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{y}) \qquad \Box$$

• In general, the objective function of an LP – a linear function – is convex

4 Minimizing convex functions over convex sets

Big Theorem. Consider the following optimization model:

minimize
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \begin{cases} \leq \\ \geq \\ = \end{cases} b_i$ for $i \in \{1, ..., m\}$ (*)

Suppose f is convex and the feasible region is convex. If \mathbf{x} is a local optimal solution, then \mathbf{x} is a global optimal solution.

Proof.

- By contradiction suppose **x** is not a global optimal solution
- Then there must be another feasible solution **y** such that $f(\mathbf{y}) < f(\mathbf{x})$
- Take $\lambda \mathbf{x} + (1 \lambda)\mathbf{y}$ really close to \mathbf{x} (λ really close to 1)
- Since the feasible region is convex, $\lambda \mathbf{x} + (1 \lambda)\mathbf{y}$ is also in the feasible region
- We have that:

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) \qquad \text{(since } f \text{ is convex)}$$
$$< \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{x}) \qquad \text{(since } f(\mathbf{y}) < f(\mathbf{x}))$$
$$= f(\mathbf{x})$$

- Therefore: $f(\lambda \mathbf{x} + (1 \lambda)\mathbf{y}) < f(\mathbf{x})$
- $\lambda \mathbf{x} + (1 \lambda)\mathbf{y}$ is a feasible solution in the neighborhood of \mathbf{x} with better objective value than \mathbf{x}
- This contradicts **x** being a local optimal solution!
- Therefore, x must be a global optimal solution
- Remember that an improving search algorithm finds local optimal solutions
- Since the objective function of an LP is convex, and the feasible region of an LP is convex:

Big Corollary 1. A global optimal solution of a <u>minimizing</u> linear program can be found with an improving search algorithm.

- A similar theorem and corollary exists when maximizing concave functions over convex sets
 - See pages 222-225 in Rader for details

Big Corollary 2. A global optimal solution of a <u>maximizing</u> linear program can be found with an improving search algorithm.